Castelnuovo-mumford Regularity for Complexes and Weakly Koszul Modules

نویسنده

  • KOHJI YANAGAWA
چکیده

Let A be a noetherian AS regular Koszul quiver algebra (if A is commutative, it is essentially a polynomial ring), and grA the category of finitely generated graded left A-modules. Following Jørgensen, we define the CastelnuovoMumford regularity reg(M•) of a complex M• ∈ D(grA) in terms of the local cohomologies or the minimal projective resolution of M•. Let A be the quadratic dual ring of A. For the Koszul duality functor G : D(grA) → D(grA), we have reg(M•) = max{ i | H(G(M)) 6= 0 }. Using these concepts, we interpret results of Martinez-Villa and Zacharia concerning weakly Koszul modules over A. As an application, refining a result of Herzog and Römer, we show that if J is a monomial ideal of an exterior algebra E = ∧ 〈y1, . . . , yd〉, d ≥ 3, then the (d − 2) nd syzygy of E/J is weakly Koszul.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

, Castelnuovo - Mumford Regularity , and Generic Initial Ideals

KOSZUL ALGEBRAS, CASTELNUOVO-MUMFORD REGULARITY, AND GENERIC INITIAL IDEALS Giulio Caviglia The University of Kansas Advisor: Craig Huneke August, 2004 The central topics of this dissertation are: Koszul Algebras, bounds for the Castelnuovo Mumford regularity, and methods involving the use of generic changes of coordinates and generic hyperplane restrictions. We give an introduction to Koszul a...

متن کامل

Bounding cochordal cover number of graphs via vertex stretching

It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...

متن کامل

Castelnuovo-Mumford regularity of products of monomial ideals

Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...

متن کامل

Castelnuovo-Mumford regularity of canonical and deficiency modules

We give two kinds of bounds for the Castelnuovo-Mumford regularity of the canonical module and the deficiency modules of a ring, respectively in terms of the homological degree and the Castelnuovo-Mumford regularity of the original ring.

متن کامل

Castelnuovo-mumford Regularity of Ext Modules and Homological Degree

Bounds for the Castelnuovo-Mumford regularity of Ext modules, over a polynomial ring over a field, are given in terms of the initial degrees, Castelnuovo-Mumford regularities and number of generators of the two graded modules involved. These general bounds are refined in the case the second module is the ring. Other estimates, for instance on the size of graded pieces of these modules, are give...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005